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Abstract

Adversarial attacks pose a major threat to the security and reliability of machine
learning models. Particularly dangerous are universal adversarial perturbations
(UAPs), which are computed once and are applicable to almost every input across
numerous models. In the past, various defense strategies have been developed for
conventional adversarial perturbations, however, their performance has never been
evaluated on UAPs. For this reason, we analyse four well-known defenses for their
performance against UAPs. We find out that most of them provide a solid protection
factor against UAPs, although the performance is highly volatile depending on the
dataset. For this reason, we develop based on the perturbation rectifying network
an optimal defense strategy that protects against both conventional and universal
adversarial perturbations. It achieves an exceptionally high performance reducing
the foolrate from nearly 100% to under 20% for almost every dataset and attack eval-
uated. It has proven to be particularly reliable across all evaluated attacks and offers
an almost identical clean accuracy in comparison to the base model. The findings of
this thesis can be used to assess which defenses provide protection against UAPs and
to protect own machine learning models against adversarial attacks whether they are
universal or not.
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1 Introduction

Until a few years ago, deep learning and artificial intelligence were just a small area
of research within computer science. The beginnings of machine learning date back
to the 1950s. At that time, it was a purely theoretical field of research, developing
algorithms and architectures for machine learning. The computers available at the
time were nowhere near as powerful enough to implement these algorithms. This
changed in the early 2000s with advances in computing power and data availability.
It was now possible to train advanced machine learning models which became deeper
and deeper in their architecture, coining the term ’deep learning’. In the following
years, the availability of large amounts of data and the development of increasingly
powerful graphics processing units (GPUs) led to breakthroughs in image recognition,
speech processing and time series analysis. The progress in recent years has been
so rapid that the trend towards artificial intelligence has reached the masses. AI is
being used in almost every aspect of life: checking emails for spam, keeping cars on
track or recognizing faces on ID cards. Therefore AI is also increasingly being used
in critical applications, making the security and reliability of AI models extremely
important.

When developing and training algorithms, performance is often the only relevant
metric. Architectures and algorithms are designed in such a way that they fulfill
their task as error-free as possible. Until a few years ago, a central issue, the secu-
rity, was left out of the equation. In 2013, the paper "Intriguing properties of neural
networks" [30] was published. It was one of the first paper addressing the issue of
security by providing a new type of attack against AI. The researchers showed that
it is possible to fool an AI model using so-called adversarial perturbations, thereby
compromising the reliability of its predictions. Adversarial perturbations are delib-
erate changes to the input data that are barely noticeable to a human, but influence
the AI so massively that it produces incorrect predictions. In their paper, Szegedy
et al. focused on the generation of adversarial perturbations for images. They were
able to show that the altered images can fool advanced convolutional neural net-
works (CNNs), posing a serious threat. During this work, we will refer to them as
conventional adversarial perturbations (CAPs). It was shown, that CAPs can influ-
ence a high number of safety-critical applications such as the traffic sign recognition
in autonomous cars or the facial recognition in passport controls [35, 31]. Without
appropriate defense measures, this can lead to catastrophic consequences, as shown
in Figure 1.1 for autonomous driving. It shows three different scenarios in which ad-
versarial attacks influence the behavior of the corresponding vehicle. Not only is it
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possible to manipulate traffic sign recognition or the lane assistant, it is also possible
to add or remove objects or entire persons from the vehicle’s field of vision. This
gives the attacker almost complete control of the vehicle.

Figure 1.1: Different attack vectors for autonomous driving[43]

The use of CAPs is most common in images, however they can also be applied to
other input data, such as text or audio [25, 7]. In this work we will only discuss
adversarial examples in the form of images, since most of the research is conducted
on this type of perturbations.

Based on the research of Szegedy et al., numerous methods and algorithms were
developed in the following years to make CAPs even more effective and faster to
compute [4]. All of the algorithms developed had one important thing in common:
the perturbation had to be computed individually for each input, which had a neg-
ative impact on the computational power and flexibility of the attack. Therefore,
the aim was to find perturbations that are transferable both at model and input
level. Moosavi-Dezfooli et al. made the crucial breakthrough in 2017 with their
work on universal adversarial perturbations (UAPs) [22]. Unlike CAPs, which are
tailored to a specific model and input, universal adversarial perturbations can be
applied to a wide range of models and inputs. UAPs are as well so minimal that
they are barely perceptible to humans. Because of their high transferability and
imperceptibility, UAPs are a dangerous attack vector for machine learning mod-
els.
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It is therefore of great importance to make machine learning models more resilient to
adversarial attacks, especially against UAPs. For this reason we will evaluate differ-
ent defense measures regarding their effectiveness on UAPs and compare their perfor-
mance. We use these findings to implement a new defense strategy which achieves the
best possible defense performance against both CAPs and UAPs.

1.1 Approach

Although the existence of UAPs has been known for years, the research has mainly
focused on CAPs. Therefore, there are only a small number of papers dealing with
protection against UAPs. Most protective measures have been designed and evalu-
ated exclusively for CAPs, leaving their effectiveness against UAPs unknown. As a
consequence, it is not unlikely that some of these defenses are vulnerable to UAPs,
posing a potential security risk to the models in which they are deployed. For this
reason, we want to analyze the effectiveness of the defenses against UAPs so that
models are protected against both CAPs and UAPs in the future. For this pur-
pose, we implement four different defenses on various models and datasets. The
evaluation is performed on UAPs to collect the data for our research question and
on PGD-10 perturbations to ensure the effectiveness of the defenses on CAPs. We
will then compare the results with the performance of defenses that were explicitly
developed for UAPs. In order to make this as representative as possible, we use
two different algorithms to generate the UAPs: Deepfool for better comparability
with other papers and Stochastic Gradient Aggregation (SGA), as this algorithm
has been shown to generate the most powerful UAPs. The aim of this work is
to determine whether defenses developed for CAPs are also robust against UAPs.
Based on the results, we can also determine which defense strategies offer the highest
protection against UAPs and what performance can be expected. In the best case
scenario, we find a way to protect machine learning models from both UAPs and
CAPs

1.2 Related Work

So far, only a few papers have been published that systematically evaluate the per-
formance of different CAPs/UAPs. Among them is the publication by Jing Wu et al.
who evaluated different adversarial attacks on clean models in the year 2021 [37]. An-
other relevant paper provides a good overview of the performance of different UAPs
[34]. There, UAPs are evaluated extensively using different thread models. Despite
the recent publication date, the state of the art SGA algorithm was not considered
in the evaluation by Juanjuan Weng et al.. In addition, the performance was only
evaluated on clean models that have no integrated defense. There are numerous sur-
veys on the topic of adversarial defenses in the published literature [41, 9, 8]. They
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usually describe how the individual defenses work and summarize the performance
values of the original papers. Rarely are a separate evaluation of various defenses is
conducted, like in the paper by Gaurang Sriramanan et al. [28]. There they evaluate
the protection factor of different defenses against adversarial attacks. However, only
CAPs are used, so the protection factor against UAPs remains unknown. Due to the
small number of UAP-specific defenses, we are not aware of any paper that systemat-
ically evaluates them. To our knowledge, no CAP specific defenses have been tested
on UAPs to the extent that we will do in this paper.

1.3 Structure of the thesis

This thesis is divided into five separate chapters. The introductory chapter provides
an overview of the research topic, its significance and the objectives of the thesis.
The background chapter provides the necessary theoretical foundation and context
for understanding the research topic. It includes the key concepts of machine learn-
ing, a technical introduction to the attacks and defenses and an overview of existing
approaches. In the methodology section, we explain the experimental design, intro-
duce the evaluation metrics and describe the implementation of both attacks and
defenses. The results of our experiments are discussed in detail in the evaluation
chapter. There, we analyse our results and compare them with each other. In the
final chapter, we summarise the main findings of the evaluation, discuss their rele-
vance, and outline the contributions of our work. We also suggest possible directions
for future research.



2 Background

This chapter introduces the basics of machine learning and discusses all relevant
aspects that are necessary for understanding the following sections of this thesis.
It begins with an overview of machine learning and explains its basic concepts
and functionalities. We will then discuss the algorithms used in modern appli-
cations, including neural networks and convolutional neural networks. Following
this, we will cover the learning process and optimization algorithms. After that,
we will give an overview of adversarial perturbations and explain the calculation
process. At the end we will thematise the defenses that we will evaluate in this
thesis.

2.1 Deep Neural Networks

At the beginning of this work, we would like to explain some basic terms and concepts
and categorize them in the growing field of artificial intelligence. Artificial intelligence
(AI) is a field in computer science where the imitation of human cognitive abilities
by machines is researched. AI serves as a generic term (especially in the media) for
numerous approaches that are based on both pre-programmed processes and machine
learning algorithms. The term machine learning, which is often used synonymously
with AI, is a sub-area of AI that focuses on the development of algorithms which
enable a computer to learn. Impressive progress has been made in this area in
particular over the last few decades. A particularly powerful class of machine learning
algorithms are artificial neural network (NN). The basic idea behind them is to
artificially model the human brain with its neurons and synapses. Based on the
biological model, NNs have so-called nodes and weights which are the equivalent
of neurons and synapses. An NN is often represented as a graph, an example of
which can be seen in Figure 2.2. The architecture of an NN is built up in layers.
Each layer contains a fixed number of nodes that are connected to the nodes of the
next layer. A distinction is made between the input layer, the hidden layer and the
output layer. The input layer is the interface between the input data and the neural
network. Most of the learning process takes place in the hidden layer. This is where
the NN extracts the patterns and features of the input data and uses them to learn.
The name is due to the fact that the calculations within the hidden layer are not
directly accessible. The output layer converts the extracted features into an output
and provides the corresponding prediction. If an NN contains many hidden layers, it
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is called a deep neural network (DNN). The sequence of many hidden layers makes
it possible to develop very powerful NNs, as the learning process takes place in these
layers and thus allows complex features to be learnt. This architecture gave the term
deep learning its origin, which describes the use of DNNs for machine learning. Deep
learning is therefore a subcategory of machine learning.

Figure 2.1: Overview of the subcategories of artificial intelligence

The simplest architecture of a DNN is a multilayer perceptron (MLP) which is repre-
sented in Figure 2.2. It can be used for numerous tasks including image recognition,
regression and speech processing. Although MLPs are very flexible, they quickly
reach their capacity limits for specialized tasks such as image recognition. This is
due to the shape of the architecture. For an image with dimensions of 200 × 200
pixels, a total of 40,000 nodes are required in the input layer to process the image
pixel by pixel. If the first hidden layer is also 40,000 nodes in size, this results in
1,600,000,000 connection edges that are required to connect the first two layers! (as-
suming a fully connected network) For this reason, MLPs are not suitable for very
large input data. We would therefore like to present a more advanced architecture
that specializes in image processing.

Figure 2.2: Structure of an artificial neural network consisting of three layers
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2.2 Convolutional Neural Networks

Convolutional neural networks also belong to the DNNs. The first part of the name
reveals the special nature of this architecture. Convolution describes a mathematical
operation in which two functions are overlaid to create a new function. This is an
essential component of the so-called convolutional layer. The convolutional layer has
the task of extracting patterns from small areas of the image. It consists of one or
more filters that move across the image and perform a convolution operation. A filter
is basically a matrix that is placed over a section of the image and is combined with
the image values. Depending on which values the matrix contains, other features
are extracted from this image area (e.g. vertical lines or corners). The values of the
matrix are adjusted during the training process so that exactly those features are
extracted that are necessary for the classification of the images. The convolution be-
tween the filter and the image results in a feature map that represents the extracted
features of the image. Usually, a convolutional layer applies several filters simulta-
neously to the input, so that different feature maps and thus different features are
extracted.

Figure 2.3: Generation of a feature map by the convolution between input image and
filter

Figure 2.4 shows some examples of feature maps that were generated in the first
convolutional layer of the Resnet50 model. It is obvious that the feature maps were
generated by different filters.
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Figure 2.4: Feature maps extracted from the Res1 block of a Resnet50 trained on
Imagenet. The image on the left is the original input image, the other
three are feature maps generated with different filters

The feature maps, which are the output of a convolutional layer, are typically pro-
cessed further by a pooling layer. Within the pooling layer, the dimension (i.e.
the size) of the feature maps is reduced in order to reduce the computing load
and improve the generalization capability of the network. There are various ap-
proaches to reduce the dimensions of feature maps. One of the most common is
max-pooling, in which the feature map is divided into small image areas and only
the maximum value of each area is used. In this way, the most distinctive features
are retained and the dimensionality of the feature map is reduced by a factor of
2-4. A simplified illustration of how max pooling works is shown in the Figure 2.5
below.

Figure 2.5: Visual representation of the dimension reduction through Max Pooling

The classic architecture of a CNN contains several convolutional and pooling layers
that are arranged alternately. As the data progresses through the network to the
output layer, the dimensionality of the feature maps decreases, with the extracted
features becoming more and more distinctive. The last pooling layer is followed by a
classic neural network like the one presented above. Here, the feature maps from the
last pooling layer are converted into a vector and used as input for the NN. In this
step, the feature maps are only a few pixels in size, so the total size of the input layer
consists of a few 100 to 1000 nodes and not 40,000 as in the example above. This
dimensional reduction is one of the reasons why CNNs are used for image recognition.
The NN processes the input and then returns a prediction. The CNN architecture
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described above is shown graphically in Figure 2.6. The input image is processed
here from left to right. It should be noted that the functionality of the CNN is
presented in a simplified form. In reality, additional layers and modules are used to
make the feature extraction as reliable and precise as possible. However, this level of
detail is beyond of this work and is not further relevant for the basic understanding
of CNNs.

Figure 2.6: Exemplary representation of a CNN architecture [27]

2.3 Learning process

In the field of machine learning, there are three major categories which describe the
learning type of a model: supervised learning, unsupervised learning and reinforce-
ment learning. Since DNNs are mainly assigned to the category of supervised learn-
ing, we will take a closer look at this class. Supervised learning describes the training
with data for which the corresponding output value (labels) is already known. This
could be, for example, images and their corresponding class or numerical data (e.g.
in property analysis) and the corresponding target value (price). In this way, a model
can learn patterns and correlations between the input data and the labels. To do
so, the internal parameters (the weights of the model) are adjusted during training.
The adjustment of the parameters can be understood as a mathematical optimisa-
tion problem. The output of the DNN is the actual value and the label is the target
value. Using a loss function, the deviation between the actual and target values is
calculated. One common loss function used in multiclass classification tasks is the
cross-entropy loss [1].

L (yj , ŷj) = −
K∑
j=1

yj log (ŷj) (2.1)

The loss is calculated by iterating through each class and multiplying the current
label yj with the logarithm of the prediction ŷj , which is represented as a probability
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[1]. By using the logarithm, the function returns a higher loss value for predictions
that are confidently wrong. Based on the output of the Loss function, the parameters
of the DNN are adjusted by an optimization function, which makes the model learn.
This process is repeated several times and leads to an increasingly adaptation of the
model to the training data. The aim of the training is to minimise the value of the
loss function (loss value) so that the error between the output of the DNN and the
label is minimal. The whole process can be illustrated as a movement on a multi-
dimensional landscape. The loss value in dependence to the model parameters results
in a multidimensional landscape in which the global minimum is searched for. The
movement within the landscape is achieved by adjusting the model parameters. The
adjustment of the parameters is determined by gradients that indicate the direction
of the steepest increase within a given function, in this case the loss function. They
are calculated by taking the partial derivatives of the loss function with respect to
each parameter.

∂L
∂wij

=
∂L
∂ŷj
· ∂ŷj
∂xj
· ∂xj
∂wij

(2.2)

2.2: Chain rule to calculate the derivatives of the loss function L with respect to
the model parameters wij . The input of each neuron is represented by xj and the
corresponding output by ŷj [2]

The gradients point in the direction in which the loss value increases most rapidly.
Therefore, the parameters are updated in the direction of the negative gradient in
order to minimise the loss value. The aim is to reach the global minimum of the
functional landscape.

Figure 2.7: Gradient descent in a 3-Dimensional landscape [12]
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This process is called gradient descent and is carried out iteratively, whereby the
error size of the model is continuously reduced. By minimising the loss value, the
model continuously adapts to the training data, although it is essential that the
model retains a certain generalisation capability and is not adapted too much to the
training data (overfitting). If this were the case, the performance of the model on new
data would drop drastically. The opposite of overfitting is underfitting which means
that the model cannot fully adapt to the training data due to an insufficient number
of parameters. In this case, the performance would also decrease significantly. The
challenge is therefore to construct a model that is complex enough to learn the input
data, but with parameters that can be regulated to avoid overfitting. The parameters
that are responsible for regulating the model are called hyperparameters. One of the
most important hyperparameter is the learning rate, which indicates how much the
model weights are adjusted during the training process. It can be regarded as the
step size with which the gradient descent is performed. A learning rate that is
too high can lead to oscillations or even to the divergence of the training, as the
gradient descent shoots beyond the global minimum. If the learning rate is too
low, it leads to slow or stagnating learning. Therefore, it is common practice to
dynamically adjust the learning rate during training. The effect of the learning rate
on the gradient descent is sketched in Figure 2.8. Since the training success of a
DNN depends largely on the choice of hyperparameters, a appropriate selection is
essential.

Figure 2.8: Impact of the learning rate on the convergence of the gradient descent
[32]
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2.4 Adversarial Perturbation

Adversarial perturbations are small, often barely perceptible changes to the input
image that have a significant influence on the output of the model. The perturbations
are constructed in such a way that they can hardly be recognised by humans or
are only perceived as a weak noise. Although the perturbations appear random in
their structure, they are calculated precisely for each pixel so that they exploit the
weaknesses of a model. The calculation of (untargeted) adversarial perturbations can
be described as the following optimisation problem [33]:

xadv = x+ δ

δ = argmin
r
{∥r∥p : f (x+ δ) ̸= f(x)} (2.3)

Whereby x is the input, and f(x) is the prediction of the DNN given the input x.
There are numerous algorithms that can generate adversarial perturbations based
on this optimisation problem [4]. Most of them use the gradients or the signs of the
gradients to construct the perturbation (assuming a white-box setting). We distin-
guish between targeted and untargeted adversarial perturbations. Given a Dataset
D and a target class T , they are defined as follows:

Targeted: f(x+ δ) = T ∀x ∈ X ,X ⊂ D, |X | = 1 (2.4)

Untargeted: f(x+ δ) ̸= f(x) ∀x ∈ X ,X ⊂ D, |X | = 1 (2.5)

For targeted perturbations, the aim of is to influence the model in such a way that
a specific class or a specific prediction T is returned. Whereas, the goal of an untar-
geted perturbation is to generate an incorrect prediction, regardless of the predicted
class (label flip). In general, untargeted perturbations are more robust because they
are not aiming at a specific target class.

Figure 2.9 compares original images with the perturbed ones. The predictions clearly
indicate that a perturbation is embedded and successfully fools the DNN. To visualise
the perturbations, they are amplified with a factor of×100.
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Figure 2.9: The original images (left) combined with the adversarial perturbation
result in an adversarial input (right) that was consistently misclassified.
The classification was performed by a Resnet50, using PGD-10 pertur-
bations

To understand exactly how perturbations work, it is necessary to take a look at the
input space. The input space represents all possible inputs that a DNN can process.
In the context of images, this means that all RGB images with the dimension h×w
(height×width) lie in an n = 3×h×w dimensional space. Each pixel value is assigned
its own dimension, which creates the high-dimensional space. The input space for
images is therefore the space of all possible combinations of pixel values that an
image can represent. During training, a DNN learns to segment the input space and
to assign a class to each area. Depending on the area in which an input image lies,
the DNN classifies it correspondingly. The border between two classification areas
is called the decision boundary. To achieve misclassification through adversarial
perturbations, the image must be pushed over a decision boundary (figure 2.10).
Each pixel change in the image causes the image to move within the input space.
Adversarial perturbations change precisely those pixels that are necessary to move
the input image across the decision boundary. The perturbation can therefore be
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seen as a vector that moves the image within the input space. As each image has
its own position, the perturbation must be calculated individually for each input.
In most cases, the transfer of perturbations is not effective and does not result in a
misclassification.

Figure 2.10: Shifting the input X1 across the decision boundary through an adver-
sarial perturbation

Figure 2.11: Left: Adversarial perturbation of input X1 applied to other inputs.
A shift across the decision boundary is only successful for X1. Right:
Adversarial perturbations calculated individually for each input.
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2.4.1 Universal Adversarial Perturbations

The distinctive feature of universal adversarial perturbations (UAP) is that they can
be applied to many different inputs. They work after the same principle as CAPs
with the difference that they shift almost every input outside their own classification
range. To achieve this, adversarial perturbations are usually calculated for entire
batches (multiple input data) or individual perturbations are added together. The
exact procedure depends on the algorithm used, which we will discuss later. Figure
2.12 sketches the aggregation of perturbations. The individual calculated vectors of
X1, X2, X3 and X4 are aggregated and form a new vector. This vector is universal
and shifts each of the four inputs outside its own classification area. In addition,
UAPs also generalise well across various models. Moosavi and co. showed in their
paper that UAPs generated on one specific model are quite effective on other models
too [22]. Therefore, there is a universal transferability both on the input data and on
the models themselves. UAPs can also be targeted or untargeted. However, they are
mostly generated untargeted for reasons of robustness.

Untargeted UAP: f(x+ δ) ̸= f(x)∀x ∈ X ,X ⊆ D, 1 < |X | ≤ |D| (2.6)

Figure 2.13 shows some UAPs that were generated on different models. In con-
trast to conventional adversarial perturbations, it is noticeable that they contain
a pattern that is influenced by the generation algorithm, the training data and
the target model. As they do not have a noise-like structure, defenses that focus
on noise removal may not be as effective. We will investigate this as well in our
work.

Figure 2.12: The addition of the individual perturbations results in a universal vector
- the UAP
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Figure 2.13: Overview of different UAPs generated by various algorithms on different
models

PGD10

Projected Gradient Descent (PGD) is one of the most powerful algorithms for gen-
erating CAPs [19][26]. Developed by Madry et al., the iterative algorithm searches
for an optimal perturbation where the values are limited by the Lp norm. PGD
can be implemented both targeted and untargeted, although we only use the un-
targeted implementation in this work. In contrast to other methods such as the
I-FGSM (Iterative Fast Gradient Sign Method), PGD projects the current pertur-
bations onto the valid Lp space after each iteration (see Lp norm). This forces the
optimization algorithm to search for a functioning perturbation that is within the



2.4 Adversarial Perturbation 23

Lp range. This procedure results in particularly effective perturbations, as the opti-
mization is performed in each iteration depending on the Lp norm. PGD calculates
the gradients of the input image in each iteration and adjusts the pixel values ac-
cordingly. The number behind PGD indicates the number of iterations that PGD
runs through. We use PGD-10 in this work, so each perturbation is generated by 10
iterations.

Algorithm 1: PGD generation loop for a adversarial step size α and N PGD
steps. [36]
δ = 0 // or randomly initialized
for j = 1 . . . N do
δ = δ + α · (∇δℓ(fθ(xi + δ), yi))
δ = max(min(δ, ϵ),−ϵ)

end for

Deepfool

In many cases, algorithms developed for the computation of CAPs can be modified
to also generate UAPs. This was demonstrated by Moosavi et al. in their work
on UAPs [22]. They used the Deepfool [21] algorithm as the basis for generating
the first UAPs. Deepfool is an iterative optimization algorithm that was introduced
in 2015. It calculates approximately the orthogonal vector in the multidimensional
space between the input x and the next hyperplane of the decision boundary to
find the minimum perturbation of x. The intuition behind this is based on the
fact that the orthogonal vector represents the shortest distance between the input
x and the next hyperplane. This vector is used as a perturbation and shifts the
original input x across the decision boundary. The perturbation of x is minimal
(according to L2 norm), since the shortest distance implies the smallest change.

Algorithm 2: Inner loop Deepfool UAP generation. [22]
1: for each datapoint xi ∈ X do
2: if k̂(xi + v) = k̂(xi) then
3: Compute the minimal perturbation that sends xi + v to the decision

boundary: ∆vi ← argminr ∥r∥2 s.t. k̂(xi + v + r) ̸= k̂(xi).
4: Update the perturbation: v ← Pp,ξ(v +∆vi).
5: end if
6: end for
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In each iteration, the algorithm behaves greedy, so it cannot be guaranteed that the
optimal perturbation will be found. However, the observations of Moosavi et al. show
that in practice Deepfool strongly approximates the minimum perturbation. This is
also consistent with our observation, where the values of the perturbations we gen-
erated were negligibly small. The calculation of UAPs according to Moosavi et al. is
basically an iterative execution of the deepfool algorithm on images of various classes
(see algorithm 2). The aim is to calculate the minimum perturbation for each image
and to combine this with the perturbations of the other images. This is achieved by
adding the (orthogonal) vectors. In order to achieve the best possible generalization,
the algorithm runs through several epochs whereby the number can be adjusted and
have a direct impact on the quality of the UAPs.

SGA

The Stochastic Gradient aggregation algorithm (SGA) is currently the most power-
ful UAP generation algorithm. Xuanna Liu et al. demonstrated that they achieve
a higher fooling rate using SGA than any other generation method published so far
[17]. SGA solves two problems normally encountered in the calculation of UAPs:
Gradient instability and quantization error. The term gradient instability describes
the phenomenon that during the optimization process gradients can behave irregu-
larly and fluctuate strongly due to factors such as disappearing or exploding gradi-
ents, which leads to challenges in adapting the adversarial perturbation. In addition
many generation algorithms use the signs of the gradients to calculate the pertur-
bations. Using the signs multiple times during the optimization process results in
an increasing quantization error, which reduces the performance of the adversarial
perturbations.

The authors solved these two challenges by further developing the SPGD algorithm
(to see in algorithm 3). The input data is processed in batches (xLB) and for each
batch a set of gradients gAggs is calculated and is then used to adjust δ, which is
the UAP. However, the crucial difference lies in the calculation of the gradients.
Random elements are taken from each batch and stored in a so-called minibatch
(xLB). This is repeated several times until a fixed number of minibatches have
been generated. Then the batch delta (δinner) is calculated for each minibatch and
temporarily stored. Afterwards gAggs is calculated by averaging all the gradients of
δinner. By averaging the gradients, SGA reduces the previous mentioned gradient
instability. The quantization error is minimized by the one-time adjustment of δ by
gAggs. SGA runs through several epochs and terminates after the iteration of the
last epoch returning the δ as the generated UAP.
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Figure 2.14: Illustration of gradient instability (a) and quantization error (c). SGA
solves this issues by adding and averaging the gradients(b) and a one-
step quantization(d) [17]

The underlying idea behind the use of minibatches is to achieve the lowest possi-
ble gradient instability by averaging the gradients. In the past, large batches were
used for this purpose, but it turned out that large batches tend to get stuck in
local minima and therefore do not generalize very well [14, 13, 20]. The random
sampling of the minibatches addresses the problem of gradient instability, while the
small size reduces the probability of converging in a local minimum. The combina-
tion of low gradient instability, high generalization and minimal quantization error
leads to very powerful UAPs. Both the minibatch size and the number of mini-
batches per batch are hyperparameters investigated by Xuanna Liu et al. in their
paper. With the optimal minibatch parameters, which we specify in the methodol-
ogy, it is possible to achieve a fooling rate of well over 90% for all common CNN
models.
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Algorithm 3: The SGA attack algorithm [17]
input : A surrogate model f , loss function L
input : The training image set X, large-batch xLB, small-batch xSB

input : Maximum perturbation magnitude ϵ, number of epochs T , step size α
output: A universal adversarial perturbation δ

1 Initialize δ = 0;
2 for t = 0 to T − 1 do
3 for xLB ∈X do
4 δinner0 = δ;
5 gAggs = 0;
6 for m = 0 to M − 1 do
7 Random select xSB

m ∈ xLB;
8 g̃m = 1

|xSB|∇δL
(
xSB
m + δinnerm

)
;

9 δinnerm+1 = Clipϵδ
(
δinnerm + α · sign (g̃m)

)
;

10 gAggs ← gAggs + g̃m;
11 end
12 δ ← Clipϵδ

(
δ + α · sign

(
gAggs

))
;

13 end
14 end
15 return δ.

2.4.2 Lp-Norm

To keep the perturbation as imperceptible as possible, the difference between the orig-
inal input and the perturbed input must be minimal. In practice, the Lp norm is used
to measure this. This mathematical function is defined as follows [33]:

∥d∥p = (|d|p1 + |d|
p
2 + . . . |d|pn)

1
p (2.7)

Depending on which value is selected for p {0,1,2...∞}, the difference is calculated
using different properties. For example if choosing p = 1, this is known as the L1

norm. This calculates the sum of all absolute vector values, in an image this is the
sum of all pixel values. If you subtract the L1 norm of the two images, you get the sum
of the pixel differences. However, this value is not particularly informative, which is
why the L1 norm is only used in very special application areas [29]. The L2 norm (also
known as the Euclidean norm), which calculates the distance of a vector in space, is
much more common. By imagine the input images as two points in multidimensional
space, the L2 norm is the distance between the two images. At pixel level, this is the
average difference of all pixel values. Together with the L∞ norm, which measures
the maximum change of a single pixel, the L2 norm is the most used one. In the
case of adversarial perturbations, the Lp norm is used to limit the perturbation
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and therefore to limit the change in the image. The hyperparameter ϵ specifies the
maximum value for the Lp norm. With universal adversarial perturbations, it is
common to use the L∞ norm, which is why all ϵ specifications in this work refer to
the L∞ norm.

Figure 2.15: Visualization of the adversarial perturbations depending on the different
Lp norms

2.5 Defenses

Over the years, numerous approaches have been developed to increase the protection
against adversarial perturbations. The spectrum ranges from preprocessing measures
to advanced architectures that are specifically designed to detect perturbations. All
of these protective measures can be assigned to one of three categories. For this
work, we have chosen at least one defense from each category to make the result as
representative as possible.

Figure 2.16: Overview of the defense categories for adversarial attacks. we have
selected at least one defense from each category

The training-time category includes all defenses that aim to increase the robustness
of a model against adversarial attacks during the training process. This includes
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changes to the model architecture or to the training itself. Inference-time, on the
other hand, includes the defenses that are active during the execution of the model.
These could be for example pre- or post-processing measures. In the third category,
an additional DNN is trained that recognizes or eliminates adversarial perturbations.
The DNN can be integrated into the target model or into the preprocessing pipeline.
A combination of defenses is not mutually exclusive. However, it is important to
mention that the combination of individual defenses does not always make sense,
especially if individual defenses have vulnerabilities. These can be exploited by an
attacker, making the entire construct insecure.

2.5.1 Adversarial Training

This is the most intuitive way to protect models against adversarial attacks. Ad-
versarial training is a protective measure that is conducted during model training
and helps the model to better deal with adversarial inputs by adapting to per-
turbed inputs during the training process. For this purpose, adversarial perturba-
tions are continuously calculated during training and integrated into the training
data. Paired with the correct label of the input image, the model processes the
perturbed input and learns to classify the image correctly. This approach was first
introduced by Christian Szegedy et al. [30] and has been continuously developed
since then [6]. Over the years, numerous variations and optimizations have been
proposed for adversarial training, but the basic principle has remained the same.
Adversarial Training serves as the foundation for other defenses, such as feature
denoising.

2.5.2 Feature Denoising

As already described in the chapter on CNNs, feature maps extract distinctive fea-
tures from the input image. The CNN learns to distinguish important image areas
from unimportant ones. However, this differentiation is influenced by adversarial
perturbations. Cihang Xie et al. were able to show that perturbed inputs lead to
noisy feature maps [38]. Therefore areas that are irrelevant for the classification of
the image are activated by the perturbation. In addition, the activation of impor-
tant feature areas is reduced in some cases. From this it can be concluded that the
adversarial perturbation of an image significantly influences the feature extraction
of feature maps. To minimize the influence of the perturbations, Cihang Xie et al.
introduced a new architecture, which is trained to eliminate the noise of the feature
maps[38]. To achieve this, they use several denoising blocks that are integrated into
an existing CNN architecture. In the example of a Resnet architecture, each Resid-
ual block is followed by a denoising block. Similar to the super-denoising procedure
[23], the basic idea is to eliminate image noise. While super-denoising preprocessing
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is used exclusively for input images, the denoising block operates at feature map
level.

Figure 2.17: Detailed view of a denosing block [38]

The denoising block first processes the feature maps using a denoising operation
(non-local means) to reduce the noise. The denoised feature map is then passed
through a convolutional layer and then combined with the original feature map using
a residual connection. The convolutional layer and the residual connection are used
for feature combination and signal retention. Since the denoised feature maps are
visibly different from the original ones (figure 2.18), it is necessary to train the entire
model from scratch so that it learns to classify these feature maps correctly. The
training is done in the form of adversarial training.

Figure 2.18: Comparison between a regular and an adversarial feature map. The
corresponding denoised feature map is on the right side [38]
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2.5.3 Image Super-Resolution Preprocessing

An interesting and effective method to remove adversarial perturbations by image
preprocessing was presented by Aamir mustafa et al. [23]. The basic idea is to process
the input image before it is classified by the DNN in such a way that most of the
perturbations are removed, making them ineffective. Since CAPs are often embedded
in the image in the form of noise, the preprocessing technique focuses on noise removal
in the input image. Because this defense method is neither model-dependent nor in
need of training, it can be used in any environment and is therefore highly flexible.
This approach is not new. In the past, numerous image preprocessing techniques
have been published to protect against CAPs. These include JPEG compression [18],
feature squeezing [39] and pixel deflection [24], although Image Super Resolution is
the most effective of these, as shown by Aamir Mustafa et al. It is important to note
that they only evaluated on CAPs. Universal adversarial perturbations were not
considered in the evaluation. This is why we will analyze the performance of Super
Resolution Preprocessing as a protective measure against UAPs. The preprocessing
is performed in 2 stages. At the beginning, the noise in the image is reduced using
wavelet denoising. For that, the image is broken down into different frequency ranges.
Particularly high-frequency parts that contain noise are removed or smoothed. The
low-frequency image areas are retained, as these generally contain the basic image
structures. A particularly important parameter for wavelet denoising is Sigma, which
specifies the threshold value at which frequency the areas are smoothed. The higher
the sigma, the more aggressive is the noise suppression. However, a high sigma leads
to a decrease in image quality, so the aim is to find a balance between noise reduction
and the preservation of important image structures.

The central processing step takes place after wavelet denoising. It is based on the
assumption that high-dimensional data (in this case images) is not randomly dis-
tributed in high-dimensional space. In addition it assumes that there is a certain
similarity between natural images and that they can therefore be represented in a
low-dimensional space (Manifold assumption) [42]. The similarity of natural images
can be explained by feature correlation. Images from a natural origin usually have
many features in common, including edges, textures and colours. The more struc-
tures and features they share, the closer two images are in high-dimensional space.
Assuming that naturally generated images share many common structures, it can
be concluded that they lie in a cluster within the high-dimensional space and can
therefore be represented by lower dimensions. The spatial proximity of natural im-
ages explains the generalization ability of DNNs, which are trained with a relatively
small dataset but still perform well on unknown inputs. The DNN learns the spatial
structure of the natural inputs and assigns them to different classification areas. If
an image is perturbed with an adversarial perturbation, it moves outside the natural
cluster with a high probability of being misclassified by the DNN. In the second
pre-processing step, this displacement is reversed so that the image returns to the
original classification area of the DNN.
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This process can be formally described as follows:

N Set of natural images
∀x ∈ N : (x+ δ) /∈ N
∀x ∈ N : f(x+ δ) ∈ N

(2.8)

2.8: shifting the adversarial inputs back into the set of natural images, by using a
super resolution network f

The backshift of the image is not trivial and can only be approximated in most
cases, as it is not possible to calculate the inverse of the perturbation without the
unaltered original image. Therefore, a super-resolution network is used in the sec-
ond step of the preprocessing procedure. Super-resolution networks are CNNs that
are used to increase the resolution of an image. Depending on the architecture, an
image can be enlarged by a multiple without any noticeable loss of quality. In other
words, the super-resolution network learns how to map low-dimensional inputs to
high-dimensional outputs. As the network was trained with natural images, it can
be assumed that the high-dimensional outputs are located in the cluster of natural
images. This property is used to move the perturbed image back into the natu-
ral cluster. So, during preprocessing, the image is scaled by the super-resolution
network. This process removes a significant amount of adversarial perturbation as
unnatural noise is lost during the scaling process. The output is an enlarged image
that is largely cleared of unnatural noise. The image is then reduced to its origi-
nal size using a simple interpolation process so that it can be used as input for the
target DNN. Reducing the size only changes the dimensionality of the image, but
not its position in space. It can therefore be assumed that the shift, away from
the perturbation towards the natural images, is maintained. Aamir Mustafa et al.
showed in their paper that the shift is large enough to neutralise most adversarial
perturbations.

Figure 2.19: 3-D representation of the multidimensional space. The adversarial in-
puts (red) lie outside the natural cluster (green). After the shift through
the super resolution network, the adversarial inputs are moved back into
the natural cluster (blue) [23]
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To illustrate the denoising process, we added random noise to an image and then
denoised it using the described preprocessing technique (figure 2.20). It can be clearly
seen that the unnatural noise is well removed. This is essential for the neutralisation
of adversarial perturbations, as the misclassification is caused by these fine nuances.
In contrast to conventional adversarial perturbations, UAPs are not characterised
by a noise-like structure. In most cases, UAPs have a certain pattern that is more
or less structured depending on the target model and the data set. High-frequency
noise can only be found in small areas, if at all. This raises the question of whether
noise removal is also effective for UAPs.

Figure 2.20: Denoising performance of the super resolution preprocessing on artificial
noise. The original image on the left, the artificially noised image in the
middle and the denoised image on the right

2.5.4 Perturbation Rectifying Network

All the defenses presented so far have been developed and evaluated for CAPs. There
are only a handful of publications that deal with defenses against UAPs. A promising
method was developed in 2018 by Naveed Akhtar et al. [3]. They introduced the
concept of perturbation rectifying networks (PRNs). A PRN is a CNN that is placed
in front of the input layer of the target DNN to neutralise the UAPs in the input. The
filtered image is then passed to the actual DNN, which is no longer influenced by the
UAP. Figure 2.21 shows the structure of a PRN architecture. On the left-hand side
are the input images that are to be classified by the DNN. They pass through the
PRN and are rendered harmless if they contain a UAP. The output is then passed as
input for the DNN. A decisive advantage of the PRN is its modularity. In contrast
to other defense measures, the PRN is not invasive as it only serves as an input filter
for the DNN. It therefore does not change the DNN and can be replaced without
any problems. In addition, the PRN can be trained on any dataset and UAP classes
so that a high degree of flexibility is also possible here.
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Figure 2.21: Overview of the PRN architecture and the training process [3]

The PRN consists essentially of 3 main components. The input layer is a convolu-
tional layer, followed by 5 residual network blocks that form the core of the PRN. A
residual network block (Resnet block) is a compact CNN that is particularly suitable
for training deep architectures, as it prevents training problems such as vanishing
gradients. The output layer of the PRN consists of 2 convolutional layers. It should
be noted that both the convolutional layers and the Resnet blocks are configured in
such a way that the input image retains the same dimensionality after being pro-
cessed by the PRN. This means that the output can be used smoothly as input for the
following DNN. To train the PRN, it is necessary to have access to the target DNN in
order to calculate the gradients of the DNN’s output all the way to the PRN’s input
layer using backpropagation. Only the weights of the PRN are adjusted, the param-
eters of the DNN remain frozen in order to not change the model. During training,
approx. 50% of the inputs are perturbed with UAPs so that the PRN learns to deal
with both normal and adversarial inputs. The training data is processed in batches
and saved as a rectified batch, with each rectified batch having a corresponding clean
batch containing the unchanged input images without UAPs. The two batches are
then classified by the target DNN and the output is saved. The aim of the training
is to minimise the following cost function:

J (θp,bp) =
1

N

N∑
i=1

L (ℓ∗i , ℓi) (2.9)

ℓ∗i and ℓi are the outputs of the DNN. ℓ∗i stands for the prediction of the rectified
batch and ℓi for the prediction of the clean batch. For all training batches, the loss
function is calculated using the two outputs ℓ∗i and ℓi. The loss value indicates how
accurate the reconstruction of the rectified batch is compared to the clean batch.
Based on this, the gradients for the parameters θp and bp are calculated. This
process teaches the PRN to process the input images in such a way that the output
is as similar as possible to the original unaltered images.
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Figure 2.22: Comparison between images perturbed with SGA UAPs (top) and the
output of the PRN, the rectified images (bottom). To see the differences,
we recommend to view the images in color and enlarged
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In this chapter, we will describe how we implement the Defenses, which Models and
Dataset we selected and how the UAPs are calculated. It provides an overview of
our general approach and the evaluation metrics that we will use for the evaluation
in chapter 4.

3.1 Overview

We evaluate all defense measures on three different models, each on a different
dataset. As mentioned above, SGA UAPs are proven to be the most effective UAPs,
so we chose these for evaluation. For better comparability to other papers, we also
evaluate with Deepfool UAPs, as these have been used in the most evaluations in the
past. Since the generation of SGA-UAPs and Deepfool-UAPs differs fundamentally
(see above), a difference in the performance of the defenses cannot be ruled out and
is therefore another point of our evaluation. If the implementation of a defense re-
quires training, it is performed using PGD-10 perturbations. We opted for PGD-10
because it offers a good ratio between performance and computational effort and
is one of the most effective CAPs. All models and algorithms are implemented in
Pytorch.

3.2 Models and Datasets

To evaluate the defense methods, we will use three different Resnet models that have
been trained on various data sets. In this way, we ensure that influencing factors
such as the model architecture or the training data do not bias the evaluation. We
chose Imagenet, CIFAR-100 and CIFAR-10 as datasets [11, 15]. Imagenet is one
of the most comprehensive and popular datasets for image recognition tasks. It
contains 1.2 million images grouped into 1000 categories. The dimension of the
images is not uniform, however in practice they are scaled to 224× 224 pixels. The
evaluation on Imagenet serves as a benchmark and comparison value with other
scientific papers. CIFAR-100 and CIFAR-10 are also widely used datasets for image
classification, each consisting of a collection of 60,000 colour images splitted into 10
and 100 classes respectively. Compared to Imagenet, the images have a significantly
smaller dimension of 32× 32 pixels.
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All three datasets contain a training set and an evaluation set. The generation
of the UAPs and the training of the defenses is performed on the training data
set. All evaluations and performance measurements are conducted on the complete
evaluation data set.

We use Resnet50 to classify the Imagenet data. It is a powerful CNN that can be
pre-trained and loaded into PyTorch.

For datasets with low image dimensions such as CIFAR-10/100, it has been shown
that wider architectures outperform deep ones [40]. Especially well suited is the
wide resnet architecture that we use to evaluate CIFAR10/100. We train a wide-
resnet 34-10 for CIFAR-10 and a wide-resnet 70-16 for CIFAR-100. We train both
models for 200 epochs with a learning rate of 0.1 and a decay of 90% after every 60th
epoch. This way we achieve a clean accuracy of 89.86% for CIFAR-10 and 65.09%
for CIFAR-100. These models are the basis of our implementation. We call them
"Clean Models" in the following.

3.3 Evaluation Metrics

In order to evaluate the performance of defenses against (universal) adversarial per-
turbations, the following three metrics are generally used in the literature:

Clean Accuracy
Measures the prediction accuracy of a model on the normal, non -perturbed
dataset. The higher the clean accuracy, the better the performance of the
model on normal inputs. A good defense should not negatively influence this
metric, otherwise the model performance will decrease.

1

n
∗

n∑
i=1

f (xi) = labeli (3.1)

Adversarial Accuracy
Measures the prediction accuracy of a model on a perturbed dataset. If the
adversarial accuracy is low, many images are classified incorrectly. With an
optimal defense, the Adversarial Accuracy is equal to the clean accuracy. This
metric is often referred to as robust accuracy

1

n
∗

n∑
i=1

f
(
xadvi

)
= labeli (3.2)
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Foolrate
Measures the percentage of label flips on a perturbed dataset. The better the
perturbations are neutralized by the defense, the lower this value is.

1

n
∗

n∑
i=1

f
(
xadvi

)
̸= f (xi) (3.3)

We use all three metrics during the evaluation process (denoted as CA, AA and FR),
in order to achieve a reliable and meaningful result. This allows us to determine
how well a defense neutralizes (universal) adversarial perturbations and how the
performance of the model is influenced by the defense.

3.4 UAP Generation

For each dataset, we generate SGA and Deepfool UAPs. Based on the original paper,
we chose the hyperparameters to generate the UAPs. Xuannan Liu et al. have inves-
tigated the difference in performance of various hyperparameters to generate SGA
UAPs [3]. Based on this, we decided to use the parameters listed in 3.1. Moosavi et
al. have also specified their parameters in their paper on Deepfool UAPs [22]. We
have adjusted these slightly, allowing the algorithm to converge much faster with the
same performance. A peculiarity of the Deepfool algorithm is the parameter End
foolrate, which specifies the desired fool rate of the UAP. If this is reached, the al-
gorithm terminates immediately. Therefore, unlike SGA, Deepfool can terminate in
less than 20 epochs. With UAPs, it is common to use the L∞ norm as the measured
value for the image change. Therefore, all Epsilon parameters are to be interpreted
as L∞ values.

Parameter SGA Deepfool
Epsilon 10/255 15/255
Learnrate 0.1 0.7
Epochs 20 20
Batch size 250 -
Minibatch size 10 -
End Foolrate - 0.8

Table 3.1: Overview of the parameters used to generate the UAPs
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Each UAP was generated with a total of 10,000 different images from the respective
training dataset. If we would generate the UAPs on the images of the evaluation
dataset, they would be specially adapted to them and would falsify the evaluation.
To proof this, we generate some SGA UAPs using the evaluation dataset and com-
pare the performance in table 3.2. It can be seen that the UAPs generated on the
evaluation images have a higher performance, which is a result of the adaptation to
the data.

Dataset SGA on SGA on
train data eval data

Average FR 93.39% 96.6%
Average AC 6.23% 3.11%

Table 3.2: Comparasion between UAP performances generated on the training or
evaluation data. Experiment conducted on Imagenet, calculating 10 dif-
ferent UAPs and averaging their performance.

For Imagenet, we selected 10 random images from each class. For CIFAR 10/100,
we selected 1000 / 100 images from each class, so that 10,000 images were also
used for the generation. Since the CIFAR datasets are considerably smaller than
Imagenet, it can be assumed that the UAPs could also be generated with fewer
images. For reasons of consistency, we decided to use the same number of images as
generation data for all datasets. As the generation of UAPs is a stochastic process
(choice of images, composition of the minibatch, etc.), we only selected UAPs for
the evaluation that have a certain performance. For this purpose, we calculated the
average foolrate of all SGA/Deepfool UAPs and defined a minimum foolrate on this
basis.

Dataset SGA Deepfool
CIFAR-10 > 80% > 80%
CIFAR-100 > 90% > 80%
Imagenet > 90% > 80%

Table 3.3: Overview of the minimal foolrate for each dataset. UAPs with a lower
foolrate were discarded.

The foolrate is consistent through all three datasets except for the SGA UAPs with
CIFAR-10. Without adjusting the generation parameters, which would falsify the
evaluation, the SGA UAPs on CIFAR-10 are not as effective.The reason for this
is unclear. We limited the similarity between the UAPs to create the evaluation
set as divers as possible. SGA UAPs in particular are relatively similar to each
other (Figure 4.1). Many similar UAPs in the evaluation dataset can influence the
results. The similarity between two UAPs can be calculated using the scalar prod-
uct.
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The scalar product between two vectors a⃗ and b⃗ (in this case images) can be defined
as follows:

a⃗ · b⃗ =
n∑

i=1

ai · bi (3.4)

The maximum scalar product results between two identical UAPs and is between
187-192 for SGA and between 197-234 for Deepfool. We systematically calculated
the scalar product between all UAPs and discarded those with a scalar product
>10% of the maximal value. By ensuring a high level of diversity, a small amount
of UAPs is sufficient to obtain reliable results. For each dataset, we generated a
total of 400 UAPs of each sort. Of these, 320 are for training purposes and 80
for the evaluation (80/20 split). During the evaluation, we assigned one of the 80
UAPs to each image. The assignment was random. Depending on the constellation,
the result of the evaluation varies minimally. Therefore, to be on the safe side, we
evaluated each defense 5 times and calculated the average of the metrics. However,
the differences between the individual runs were negligible (0.1-0.5%), so one run is
sufficient for future evaluations.

Figure 3.1: Two different SGA UAPs with a high similarity score

3.5 Defense Implementation

All defenses except for the Perturbation Rectifying Network were implemented in
such a way that they achieve the highest possible performance against CAPs. Based
on the results of the original paper and our own experiments, we have found op-
timal parameters to maximize the performance of the defenses against CAPs for
the previously mentioned models. We deliberately avoided adapting the defenses to
UAPs in advance (e.g. adversarial training with UAPs) in order not to falsify the
evaluation.

Adversarial Training

We evaluated adversarial training with models from the Robust Bench platform [10].
Robust Bench is a benchmarking initiative that aims to measure the robustness
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of adversarial trained models. It provides access to these models and lists their
performance, which has been evaluated in a standardized way. For each dataset, we
filtered by the architectures mentioned above and selected the model with the highest
performance. By choosing the same architecture, the consistency of our evaluation
is ensured. We first tested the selected models on CAPs to ensure the performance
indicated by the paper. The evaluation on UAPs was performed on the evaluation
dataset according to the procedure described above.

Super-Denoising Preprocessing

Super-denoising preprocessing requires no training and no adaptation of the model.
Therefore, we were able to use the clean models and insert the preprocessing step
into the data pipeline before the model. As in the original paper, we use wavelet
denoising to reduce the noise of the input. The only relevant parameter, Sigma,
controls the amount of denoising. We successively evaluated all values between 0.03
and 0.08 and found 0.04 to be the optimal value against CAPs. This is consistent
with the results of the original paper. For the super resolution network, we use the
enhanced deep super-resolution network (EDSR) proposed in the paper [16] which is
pre-trained on Imagenet data. We have implemented a total of three EDSR models,
each scaling to a factor of ×2, ×3 and ×4. We achieved the best performance with
the ×2 EDSR and used it therefore for the evaluation.

Feature Denoising

For reasons of computing capacity, we implemented feature denoising exclusively on
CIFAR-10 and CIFAR-100. The training for Imagenet is simply too time-consuming
to be possible within the time frame of this thesis. Feature denoising is implemented
using a modified model architecture, which we call "Denoise Model" below. The
Denoise model consists of the same architecture as the Clean model but also contains
some Denosing Blocks. We have inserted these after each regular block. The Denoise
model is trained with adversarial training from scratch. To do this, we use the same
parameters as for training the clean model. For each clean batch, we calculate an
adversarial batch which contains the PGD-10 perturbed images. In each training
iteration, we calculate the respective loss values of the clean and adversarial batches.
These are then added together and averaged so that the adjustment of the weights
takes into account the loss value of both batches.

Perturbation Rectifying Network

We constructed the Perturbation Rectifying Network using the same architecture as
proposed in the original paper. The PRN is the only defense in this paper that was
developed specifically for UAPs, so the training was also performed with UAPs. In
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order to train a PRN, sufficient training data and UAPs must be available. In the
example of Imagenet, we have chosen 200 random images from each class. With
1000 classes, this results in 200,000 images. We have calculated the UAPs in ad-
vance, which speeds up the training process considerably. We use cross-entropy loss
as loss function and use the ADAM optimizer with a learning rate of 0.001. The
learning rate is reduced by 10% after every 1000th iteration. We train for 5 epochs
with a batch size of 50. In our experiments, more epochs did not lead to any sig-
nificant increase in performance. We train several PRNs with the same parameters,
but change the number of training UAPs. In this way, we want to determine how
many different UAPs are required for training an PRN in order to ensure good per-
formance. We train the PRNs on homogeneous UAPs. In other words, exclusively on
Deepfool or exclusively on SGA. However, the evaluation is carried out on both UAP
types. This allows us to evaluate how well a trained PRN can generalize to other
UAP types. Naveed Akhtar et al. have evaluated the PRN exclusively on Deep-
fool UAPs. Therefore, our evaluation provides new insights about the performance
of PRNs against newer and more powerful UAPs. Since all previous defenses were
exclusively designed for and evaluated on CAPs, we also want to train and evaluate
the PRN with CAPs in our experiments. The procedure is not that different from
the one described above, except that CAPs are used instead of UAPs during the
training.

3.6 Thread Model

This section deals with the interplay between the target model and the attacker.
The threat model describes which goals the attacker is pursuing, which points of
contact he has with the model and how he implements the attack to achieve his goal.
To describe a threat model as precisely as possible Giovanni Apruzzese et al. have
defined the criteria: Goal, Knowledge, Capabilities and Strategy[5]. We use these to
determine the thread model for our own experiments.

Goal: The goal of the attacker is to (negatively) influence the predictions of a model.
To do this, he calculates (universal) adversarial perturbations, which are integrated
into the input and therefore become adversarial inputs. They can hardly be distin-
guished from the original input, but are classified differently. Untargeted perturba-
tions lead to an arbitrary misclassification of the input, whereas targeted perturba-
tions force a specific class. UAPs are normally calculated untargeted, which is also
the case in this work.

Goal

The goal of the attacker is to (negatively) influence the predictions of a model. To
do this, he calculates (universal) adversarial perturbations, which are integrated into
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the input and therefore become adversarial inputs. They can hardly be distinguished
from the original input, but are classified differently. Untargeted perturbations lead
to an arbitrary misclassification of the input, whereas targeted perturbations force
a specific class. UAPs are normally calculated untargeted, which is also the case in
this work.

Knowledge

Depending on what knowledge the attacker has about the target model, the CAP/UAPs
are calculated in different ways. Usually, a distinction is made between white box
and black box. These concepts describe the access and knowledge that an attacker
has about a model. In white-box attacks, the attacker has complete access to the
target model and therefore knows all the details about the architecture, weights and
other parameters. This is the most powerful attacker and is often used to test the
robustness of models. In a black box setting, the attacker has no information about
the target model and can only learn about its functionality through interaction. A
distinction is made between limited black box and score-based black box. In both
variants, the attacker can interact with the model (pass input, receive output), but
they differ in the amount of information contained in the output. In Limited Black
Box setting the attacker only has access to the final value of the output (e.g. the
class of the input), whereas in Score Based Black Box the attacker has access to the
entire prediction values (e.g. confidence value for each class). In this paper, I will
only use the white-box setting, as it is the most powerful way to assess the robustness
of models and their defenses.

Capabilities

The capabilities of an attacker are strongly related to the knowledge. In the case
of UAP generation, it is not necessary to change the parameters of the model or
its training data. It is sufficient to have a reading access to the model and its
training data. In addition, the high transferability of UAPs allows them to be
trained on another model that has a similar architecture and was trained with similar
data.

Strategy

Using the gradients, the attacker solves the optimization problem from described in
Formula (2.3). As already mentioned in the chapter on adversarial perturbations,
there are various approaches (one-step, iterative, etc.). Our UAPs are generated
with the gradients using iterative algorithms.
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In this chapter we will present and analyze the results of our experiments. In ad-
dition, we will examine the protective behavior of defenses depending on their pa-
rameters and configurations. We will answer our research question using the data
collected as well as design and test the best possible defense against both CAPs
and UAPs. Our evaluation is conducted dataset wise. We will discuss the perfor-
mance of the individual defenses within a dataset and then look at the differences
between the individual datasets. There are numerous differences between Imagenet
and CIFAR10/100 in particular, which we will then try to explain. We also con-
ducted our evaluation Defense wise and illustrated it graphically, making it eas-
ier to compare the them with each other. The graphics can be found in the ap-
pendix.

4.1 CIFAR-10

Attack None Adv. Feature Super PRN UAP PRN CAP
Training Denoising Resolution trained trained

C
IF

A
R

-1
0

Clean CA 89.86 91.47 88.91 81.55 85.23 84.74

PGD-10
AA
FR

6.54
100

65.3
39.54

53.83
52.53

8.48
97.97

14.06
92.48

80.04
17.91

SGA
AA
FR

15.08
84.90

90.26
2.89

88.02
3.05

13.53
86.31

83.8
12.52

78.6
19.14

Deepfool
AA
FR

19.05
80.83

89.71
3.72

87.5
4.13

15.00
85.22

82.72
13.64

74.34
23.71

Table 4.1: Evaluation results for CIFAR-10

We start the evaluation with the smallest dataset and work our way up to the largest
one. The first look at the evaluation table 4.1 reveals that the use of no defense leads
to fatal performance drops, regardless of whether CAPs or UAPs are used. This con-
firms the high effectiveness of adversarial attacks. It is striking that the adversarial
accuracy is particularly high in relation to the 100% foolrate for the PGD attack.
This is a phenomenon that can be observed in both CIFAR datasets. At first glance,
this seems contradictory, as the adversarial accuracy behaves antiproportionally to
the foolrate, but the explanation is relatively simple. Since the foolrate measures the
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number of label flips, 100% means that the PGD-10 perturbation successfully changes
the output class of each image. For a dataset with only a few classes, the probability
is relatively high, that images that were initially misclassified by the DNN will be
mapped to the correct class by the label flip. This is the reason for the adversarial
accuracy of 6.54 %. In general, it can be said that any defense apart from the super
resolution preprocessing reduces the effectiveness of CIFAR-10 UAPs. Especially
adversarial training shows a particularly good performance. It not only increases the
base accuracy of the model, it also provides an exceptionally high protection factor
against UAPs, reducing the foolrate to under 4%.

The Feature Denoising shows similar results, although the training is much more
complex and time consuming. As expected, the perturbation rectifying network offers
a high protection factor against UAPs and delivers a high clean accuracy of 85.23%.
Therefore, it can be concluded that the performance of a PRN does not depend on
the size of the input images and that even small input images can be reconstructed
effectively. However, the performance against CAPs is not optimal and in a very low
range, reducing the foolrate from 100% to only 92.48%.

To improve this, we try to train the PRN with CAPs instead of UAPs. To our
knowledge, we are the first ones to do this. By doing so, we discovered a previously
unknown property of the PRN, which is its outstanding performance against CAPs
when properly trained. With our training, we achieve an adversarial accuracy of
80% for PGD-10 perturbations and 78% / 74% for UAPs. In fact, the CAP-trained
PRN protects by far better against CAPs than adversarial training. This is a very
strong performance for CIFAR-10, however the true potential of the PRN becomes
more apparent with the more complex datasets, so we will address this topic in a
later part of the evaluation.

The worst of all CIFAR-10 defenses was the Super resolution preprocessing. Al-
though it offers a minimal protection against CAPs, it seems to increase the nega-
tive effect of UAPs leading to a lower performance than the clean model with UAPs.
The protection factor of the super resolution preprocessing depends on the selected
sigma value. The values in the table refer to sigma = 0.04. The protection factor
tends to increase with a higher sigma, while the clean accuracy decreases. This can
be explained by the fact that a strong denoising of the image will eliminate a large
part of the perturbation, but important image elements that the DNN needs to make
a reliable prediction will also be lost during the process. Therefore, the challenge
is to find a suitable sigma value, that ensures a high protection performance on
the one hand and does not affect the clean accuracy too much on the other. We
therefore adjusted the hyperparameter sigma during our experiments, but observed
that no significant improvement could be achieved. Figure 4.1 shows the tradeoff
between clean accuracy and adversarial accuracy. Although a high sigma leads to
better adversarial accuracy, it reduces the clean accuracy so much that it is not
a useful defense in practice. The poor performance of the Super resolution pre-
processing can be observed in both CIFAR datasets, so we suspect that the Super
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resolution network and the denoising function cannot handle the small CIFAR image
size.
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Figure 4.1: Super resolution preprocessing: accuracy tradeoff clean and adversarial.
Performed on CIFAR-10.

4.2 CIFAR-100

Attack None Adv. Feature Super PRN UAP PRN CAP
Training Denoising Resolution trained trained

C
IF

A
R

-1
00

Clean CA 65.09 69.15 67.39 55.02 60.64 59.51

PGD-10
AA
FR

10.46
100

43.86
61.93

30.31
78.99

11.91
98.05

13.77
96.59

54.44
38.09

SGA
AA
FR

7.09
92.32

68.25
6.49

66.18
9.98

18.44
79.76

58.23
29.49

45.86
48.14

Deepfool
AA
FR

15.2
83.2

67.61
8.83

65.34
12.68

28.24
68.65

55.19
35.26

44.42
50.02

Table 4.2: Evaluation results for CIFAR-100

The evaluation of CIFAR-100 shows similar results to CIFAR-10. The clean accuracy
of 65.09% is lower in direct comparison, which is due to the higher complexity of the
data set. Therefore, the accuracy of the defenses should not be compared in absolute
terms but relative to the clean accuracy of the base model. For CIFAR-100, adver-
sarial training also provides a good performance. Although the protection against
CAPs is only mediocre, it is very high for UAPs, outperforming with 68% and 67%
the clean accuracy of the base model. Adversarial training is therefore particularly
suitable for CIFAR datasets.
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Feature denoising offers a similar protection factor as adversarial training, but does
not outperform it on any metric. Since we could also observe this result with CIFAR-
10, we can conclude that the extra complexity during training is not worth it com-
pared to adversarial training.

As already pointed out, the Super Resolution Preprocessing has especially great
difficulties with the CIFAR data sets. For CIFAR-100, the protection factor against
UAPs is with a foolrate of 18 % and 28% very low but higher than against CAPs
(12%) . Compared to CIFAR-10, the performance is slightly better, but still far from
being optimal. Therefore, the preprocessing is not suitable as a reliable protective
measure.

In contrast, the next defense in our evaluation, the PRN, is very reliable. Even for
this data set with a relatively high complexity and a low image dimension, the PRN
achieves a good performance. Although the UAP-trained PRN is not as effective
as adversarial training, it still provides an high level of protection against UAPs.
For PRNs that have been trained with CAPs, the protection factor against UAPs
is reduced, but it increases massively the protection against CAPs. However, the
protection against UAPs is not optimal, which is why we have gone one step further
and optimised the training even more. To do this, we trained the PRN with both
CAPs and UAPs and evaluated it in an additional experiment. The results are
represented in figure 4.2.

Figure 4.2: Defense performance of the perturbation rectifiying network trained with
both CAPs and UAPs
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The shapes within the coordinate system stand for the different attacks and the
colours for the respective datasets. The X-axis is the adversarial accuracy relative
to the clean accuracy. A value of 100 therefore indicates that the adversarial accu-
racy is just as high as the clean accuracy. We have chosen this metric in order to set
the performance of the defenses in relation to the clean accuracy. This is because
the datasets have different clean accuracies, which would bias the direct comparison,
as CIFAR-100, for example, is relatively low and CIFAR-10 relatively high. In order
to visualize the performance of the PRN properly, it is therefore necessary to set the
values relative to the clean accuracy. Since the PRN itself already has a very high
clean accuracy, this is a meaningful evaluation metric. The Y -axis represents the
foolrate as we know it. The further a data point is in the upper right corner, the
better the defense performs, as the foolrate is minimized and the accuracy is maxi-
mized. It is clear to see that our specially trained PRN performs extraordinarily well
against all evaluated attacks on every single dataset. The PRN outperforms every
evaluated defense, in terms of overall security against both CAPs and UAPs. For
better comparability with the other defenses, we have created a separate graphic for
each defense, which can be found in the appendix. A direct comparison of the ab-
solute values for the CIFAR-100 PRNs, trained with the different methods is shown
in table 4.3. The numbers clearly show that our training method with CAPs and
UAPs results in the best overall performance of all PRN models. This finding is
particularly important in regard to our research question about which defense strat-
egy offers the best protection against both UAPs and CAPs. In addition, the clean
accuracy is only minimally influenced by the PRN, so that the performance of the
target model is barely affected when processing regular inputs.

SGA CAP SGA and CAP
trained PRN trained PRN trained PRN

Clean 60.64% 59.51% 60.21%
PDG-10 13.77% 54.44% 51.66%

SGA 58.23% 45.86% 56.02%
Deepfool 55.19% 44.42% 52.7%

Table 4.3: Accuracy comparison between PRNs using different training methods.
Evaluation performed on CIFAR-100
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4.3 Imagenet

Attack None Adv. Super PRN UAP PRN CAP
Training Resolution trained trained

Im
ag

en
et

Clean CA 80.34 63.86 69.73 78.67 77.73

PGD-10
AA
FR

5.04
98.68

22.28
83.37

60.29
39.34

59.19
37.33

75.48
16.06

SGA
AA
FR

6.26
93.31

62.85
9.29

46.47
49.79

77.30
12.6

71.43
19.16

Deepfool
AA
FR

16.93
81.39

62.4
10.82

70.07
22.32

76.84
13.54

70.94
22.06

Table 4.4: Evaluation results for Imagenet

As expected, PRNs offer the best protection against UAPs. The UAP trained PRN
achieves a 77.3% accuracy on SGA perturbations and a 76.84% accuracy on Deep-
fool. By putting this in relation to the clean accuracy of the base model (80.34%), it
is obvious that this value is very high. For this and all other Dataset evaluations, we
chose a PRN that was trained with 20 different SGA UAPs. Our experiments have
shown that the performance of a PRN does not depend on the number of UAPs it
has been trained with. Therefore, it is possible to train the entire PRN with just
a single UAP. This high generalization capability is another feature that, to our
knowledge, was not previously known. Interestingly, it does not matter either with
which perturbations the PRN is trained. The performance is similar in all our exper-
iments as the table 4.5 shows. This suggests that the PRN’s reconstruction process is
particularly robust and flexible to different attacks. PRNs are therefore much more
adaptable and flexible than previously thought.
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Figure 4.3: PRN perfomance depending on number of training UAPs. Evaluation
performed on Imagenet with SGA UAPs
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SGA trained PRN Deepfool trained PRN
Clean 78.67% 79.27 %

PDG-10 59.19% 54.12 %
SGA 77.30% 76.04 %

Deepfool 76.84% 76.72 %

Table 4.5: Accuracy comparison between PRNs trained on different UAPs classes.
For each class 20 UAPs were used for the training

The protection factor of PRNs is so high that it overshadows all other defenses eval-
uated on Imagenet. Despite this, we want to take a brief look at the other ones.
Adversarial Training offers good protection against UAPs, but the clean accuracy
(63.86%) is low, which reduces the overall performance of the model. This form of
defense is therefore only suitable for the CIFAR Datasets. Super Resolution Prepro-
cessing offers a fairly high protection factor against both UAPs and CAPs. However,
the basic performance of the model suffers and the clean accuracy (69.73%) is 10%
lower than the clean accuracy of the base model. It is noticeable that the prepro-
cessing is more effective against deepfool UAPs (22.32% foolrate) than against SGA
UAPs (49.79% foolrate). We hypothesize that this is related to the structure of the
individual UAPs. SGA UAPs only contain a few noise elements and are characterized
by their distinctive pattern (see figure 3.1). It is difficult to remove this using pre-
processing techniques, as the patterns are considered part of the image structure and
not perceived as noise. Deepfool UAPs contain far fewer colors and patterns, which
makes it much easier to remove them from the image.

4.4 Summary

The measured values across all datasets confirm, that UAPs are nearly as effective
and powerful as CAPs. Especially SGA UAPs are significantly more effective than
the Deepfool variant. The foolrate of SGA, is for example 93.31% where the foolrate
of Deepfool is only 81.39% on the unprotected Imagenet model. CAPs in the form
of PGD-10 perturbations have a slightly higher performance than UAPs, achieving a
foolrate of 98.68% on Imagenet and 100% on both CIFAR-100 and CIFAR-10. How-
ever, this is not surprising and can be explained by the fact that CAPs, unlike UAPs,
are optimized for one specific input. The comparison between the Imagenet and the
CIFAR datasets clearly shows that the performance of a defense strategy is highly
dependent on the input data and the architecture used. Despite the partly different
results within the different datasets, a general trend can be observed. Adversarial
training with CAPs offers a solid protection against UAPs, but the performance
varies greatly from dataset to dataset. Feature denoising achieves similar results as
adversarial training, but it is significantly more complex to train due to the increased
model complexity. The absolute values in the evaluation tables 4.1 and 4.2 show that
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feature denoising performs slightly worse than adversarial training. So the additional
complexity during the training is not worth it. Super Resolution Preprocessing is
particularly effective for larger input images and for UAPs that have a noise-like
structure. The Perturbation Rectifying Network offers a very high level of protec-
tion across all data sets, regardless of the UAP class with which it was trained. Due
to its high generalization capability, it is possible to train the PRN with only a single
UAP. Training the PRN with CAPs is highly effective and provides an high level
of protection against CAPs. The combination of UAP and CAP training, performs
even better and results in the best defense technique to protect against both UAPs
and CAPs. It can therefore be concluded from our evaluation that CAP defenses
certainly offer a protective factor against UAPs. However, this is highly variable
and depends heavily on the UAPs and the dataset used. The defense with the best
performance on both CAPs and UAPs is the PRN. With our special training the
performance of the PRN can be maximized.



5 Concluding Remarks

Following the detailed evaluation, it is now time to summarise our findings and
place them in a broader context. As already mentioned in the introduction, the
danger posed by adversarial perturbations should not be underestimated. UAPs
in particular pose a major threat due to their universal transferability to both in-
puts and models. It is therefore essential to protect safety-critical AI applications
against them. Despite their considerable danger, they have been left out of the
development and evaluation of defensive measures in the past. This represents a
potential security risk for the models in which the defences are implemented in. For
this reason, we have devoted this thesis to the question of whether the defenses
offer a protection factor against UAPs. Our work is intended to make a contri-
bution to the security of machine learning models making them more resistant to
attacks.

During our experiments, we evaluated four different Defenses on three Datasets to
determine whether the defense methods developed CAPs are also robust against
UAPs. We selected at least one defense from each defense category and tested it on
various metrics to obtain meaningful results. Through our extensive evaluation, we
are confident that defenses designed for CAPs are also largely effective against UAPs.
We have found out that the protection factor against Deepfool is slightly higher than
SGA and that the performance of the defenses varies from dataset to dataset. We can
also conclude that the denoising preprocessing is not optimal to neutralize UAPs, as
UAPs contain only few noise elements and have a pattern like structure. In addition,
we have discovered the high generalization capability of PRNs and their outstanding
performance against CAPs. Our research question went even further, to find the op-
timal defense strategy against both CAPs and UAPs. Through our newly discovered
properties of the PRN, we have succeeded in implementing a novel training proce-
dure using both UAPs and CAPs for training. The performance comes really close
to an optimal defense. We have therefore fulfilled all the objectives of this thesis and
will now take a look at further possible areas of research.

5.1 Future work

Although we have performed the evaluation very extensively in this work, some
aspects remain open that we would like to investigate in the future. Firstly, we
would like to evaluate more attacks on the defenses. There are numerous ways
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to generate UAPs, each of them unique in their method of generation [8]. While
writing this thesis, we came up with our own ideas to generate UAPs even more
effectively and efficiently. We would like to implement them in future. Furthermore,
an evaluation of real world UAPs would be interesting, as most works (including this
one) only evaluate the effectiveness of UAPs under laboratory conditions. Ultimately,
we would like to use our findings from the PRN to further develop the defense and
achieve an even better protection factor. There are still some parameters that are
very promising and that we have not yet studied in our experiments. Our long-
term goal is to further advance the protection of AI models, and there are plenty of
opportunities to do so.

5.2 Final thoughts

At the time of writing, Sora, the text-to-video model from OpenAI, has been launched.
It is able to generate videos in a quality and level of detail that was unthinkable a
few years ago. This is just one example of how fast the development of AI is pro-
gressing. However, with every advance, we also face new questions and challenges,
particularly in terms of the safety, ethics and reliability of AI. These should play an
essential role in the development process. While models such as Sora undoubtedly
make impressive progresses, we must also ensure that appropriate safety measures
and ethical guidelines are implemented. The responsibility lies not only in developing
innovative technologies, but also in ensuring that they operate in a responsible and
secure manner.



A Acronyms

CAP conventional adversarial perturbation

CNN convolutional neural network

DNN deep neural network

MLP multilayer perceptron

NN neural network

PRN perturbation rectifying network

UAP universal adversarial perturbation
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Note: The shapes within the coordinate system stand for the different attacks and
the colours for the respective datasets. The X-axis is the adversarial accuracy rel-
ative to the clean accuracy. A value of 100 therefore indicates that the adversarial
accuracy is just as high as the clean accuracy. The Y -axis represents the fool-
rate as we know it. The further a data point is in the upper right corner, the
better the defense performs, as the foolrate is minimized and the accuracy is maxi-
mized.

Figure B.1: Attack performance on the different datasets without any defense
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Figure B.2: Defense performance of the adversarial training

Figure B.3: Defense performance of the feature denoising
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Figure B.4: Defense performance of the image super resolution preprocessing

Figure B.5: Defense performance of the perturbation rectifiying network trained with
UAPs



Figure B.6: Defense performance of the perturbation rectifiying network trained with
CAPs
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